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Kalman Filtering in the Presence of State Space Equality Constraints

Nachi Gupta

Oxford University Computing Laboratory, Numerical Anadly§&roup, Wolfson Building, Parks Road, Oxford OX1 3QD, U.K.
E-mail: nachi@comlab.ox.ac.uk

Abstract: We discuss two separate techniques for Kalman Filteringenpresence of state space equality constraints. We
then prove that despite the lack of similarity in their folations, under certain conditions, the two methods resuthath-
ematically equivalent constrained estimate structuresciviclude that the potential benefits of using equality ttaimgs in
Kalman Filtering often outweigh the computational costgl as such, equality constraints, when present, shouldfbeced

by way of one of these two methods.
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1 Introduction of the constraints. This can lead to a state space that dbes no

o ) ) ~carry much meaning to the engineer. This approach, while
Kalman Filtering [1] is a method to make real-time predic- valid, is not discussed in this paper.

tions for systems with some known dynamics. Traditionally, Analogous to the way a Kalman Filter can be extended to
problems requiring Kalman Filtering have been complex andsg|ye problems containing non-linearities in the dynamics
nonlinear. Many advances have been made in the directiosing an Extended Kalman Filter by linearizing locally (or
of dealing with nonl|near|t|e§ (e.g., Extended Kalman Fil- by using an Unscented Kalman Filter), linear equality con-
ter [2], Unscented Kalman Filter [3]). These problems alsogyained filtering can similarly be extended to problemswit
tend to have inherent state spapialityconstraints (€.9., @ nponjinear constraints by linearizing locally (or by way ofa
fixed speed for a robotic arm) or even state spaequality  other scheme). The accuracy achieved by methods dealing
constraints (e.g., maximum attainable speed of a motor). IRy nonlinear constraints will naturally depend on theistr

the past, less interest has been generated towards coestrai {,re and curvature of the nonlinear function itself.

Kalman Filtering, partly because constraints can be difficu gq,5)ity constrained Kalman Filtering also appears as a sub
to model. As a result, equality constraints are often n@gteC 1 ytine in the more general framework of inequality con-
in standard Kalman Filtering applications. However, the-De - iaineq Kalman Filtering. One method for extending an
efits of incorporating constraints can outweigh the computa g, 5jity constrained filter to an inequality constrainetffi

tional costs_ assoma_ued with constra_unlng the estimat,(e. \yould be to use an active set method (as in [6]).
the constrained estimate can be quite different from the un-

constrained estimate and the error covariance matrixcgnon 2 Kalman Filter

get tighter since we are adding information to our model). rA discrete-time Kalman Filter attempts to find the best run-

We discuss two distinct approaches to generalizing an equal . : :
. . ) ) ; ning estimate for a recursive system governed by the follow-
ity constrained Kalman Filter. The first approach is to aug-ing model:

ment the measurement space of the filter with the equality
constraints (i.e., as perfect noise-free measuremenésicht
iteration. The second approach is to find the unconstralnedxk = Floho1Zho1 + U1, U1 ~ N(0, Qup_1)
estimate from a Kalman Filter and project it down to the )
equality constrained space. Both of these approaches have
appeared in the literature in the past (e.g., [4], [5]). W& wi
then show that, under certain conditions, the first approach
and the second approach actually yield the same analyticaherez,, represents the true state of the underlying sylstem and
distribution for the constrained estimate despite theedify £, , , is the matrix that describes the transition dynamics of
formulations. There is a third well-known approach to this the system fromx;,_, to z,. The measurement made by the
problem, which is to reduce the state space by the dimensioBbserver is denoted,, and H}, is the matrix that transforms

a vector from the state space into the appropriate vectbein t

zr = Hipxp + g, Vi ~ N(O, Rk) (2)
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measurement space. The noise tetrpg_; andwv;, encom-
pass known and unknown errors i ,—; and H;, and are Uk = 2k — Zijk—1 (10)
normally distributed with mean 0 and variana@g ,—; and
Ry, respectively. At each iteration, the Kalman Filter makes
a state prediction far, which we denote by, ;. We use
the notationk|k — 1 since we will only use measurements
provided until time-steg — 1 in order to make the prediction
at time-stepk. The state prediction erras,;,_ is defined as _ ,
the difference between the true state an|d the state prewicti Sk = HpPyjp—1H), + Ry, (11)
as below. We now calculate the Kalman Gain, which lies at the heart of
the Kalman Filter. This tells us how much we prefer our new
Epho1 = Tk — Eppp_1 () observed measurement over our state prediction.

We can also calculate the associated covariance for the mea-
surement residual, which is the expectation of the outet-pro
uct of the measurement residual with its@fly, v ]. We call

this the measurement residual covariance.

The covariance structure for the expected error on the state Ky, = Pope_1 HLS7 (12)

prediction is defined as the expectation of the outer product ) .
of the state prediction error. We call this covariance stnee ~ USing the Kalman Gain and measurement residual, we update

the error covariance prediction and denoti, ;. the state estimate. If we look carefully at the following aqu
tion, we are taking a weighted sum of our state prediction
Pyp—1=E [(jk|k—1) (‘%k|kfl)/} (4) with the Kalman Gain _mL_JItipIi_ed by the measurement res_id-
ual, so the Kalman Gain is telling us how much to ‘weigh in’
In addition, the filter will provide a state estimate for, information contained in the new measurement. We calculate

given all the measurements provided up to and including timgthe updated state estimate by
stepk. We denote these estimates:by,,. We similarly de-

fine the state estimate errdy);, as below. Tk = Tpp—1 + Krvg (13)
R . Finally, we calculate the updated error covariance by egpan
Tklk = Tk — Tklk () ing the outer product in Equatiofl 6).
The expectation of the outer product of the state estimate er
ror represents the covariance structure of the expectedserr Puje = (I = KxHy,) Pyj—1 (14)
on the state estimate, which we call the updated error covariThe covariance matrices in the Kalman Filter provide us with
ance and denotg, ;. a measure for uncertainty in our predictions and updatee sta
, estimate. This is a very important feature for the various
Py =E [(jk\k) (ki) } (6)  applications of filtering since we then know how much to

) o trust our predictions and estimates. Also, since the method
At time-stepk, we can make a prediction for the underly- s recyrsive, we need to provide an initial covariance that i

ing state of the system by allowing the state to transition|5 e enough to contain the initial state estimate to ensure

forward using our model for the dynamics and noting that .omprehendible performance. For a more detailed discus-

E [uy,—1] = 0. This serves as our state prediction. sion of Kalman Filtering, we refer the reader to the follogin
book [2].

3 Incorporating Equality Constraints by Aug-
If we expand the expectation in Equatidn (4), we have the  menting the M easurement Space
following equation for the error covariance prediclion.

Tpik—1 = Frk—1Tk—1k—1

The first method for incorporating equality constrainteiat
' Kalman Filter is to ‘observe’ the constraints at every itienra
Pge—1 = Pk Perie—1 P gy + Qrts ®) as noise-free measurements. To illustrate this, wye augment
We can transform our state prediction into the measuremeritnear constraints to the system shown in Equatihs (1) and
space, which is a prediction for the measurement we now ex{2) as measurements with 0 variance. We will define the con-
pect to observe. straints in this formulation a®,x, = 6kl Thus, we can
re-write the system.

k-1 = HeZyjp—1 ©) The I in Equation[[TH) represents the identity matrix of the appiede

: imension. Throughout the remainder of this paper, we wititmue to use
The difference between the observed measurement and OI%FJ: the same fashion.

predicted measurement is the measurement residual, which' e assume these constraints are well defined throughoupisier —
we are hoping to minimize in this algorithm. i.e., no constraints conflict with one another to cause asuliition and no
constraints are repeated. More specifically, we assbimbas full row rank.

We use the prime notation on a vector or a matrix to denotesitspose Note that under these conditionslif,, was a square matrix, the constraints
throughout this paper. would completely determine the state.




ka = Fk,k_ll'kD_l + U k-1, Uk h—1 ~ N(O,Qk,k_l) S,? = HkDPk[‘)k71 (HkD)/ + RE (24a)

(15)
H
=1y Pk[|)k—1 [H, D]+ M 0 (24b)
D D_.D D D Dy, 0 0
2y = Hyzy + vy, vp ~ N(0, Ry) (16)
. . HkPkl\)qul/c"‘Rk HkPkaAD;c
Here we use the superscript notation to denote the new = D.PP o D.P D! (24c)
: ; ; ; : kL E -1k ELkk—1"k
filter with the equality constraints. The next three equaio
show the construction of the augmentation in the measure_—l_he Kalman Gain can now be written as below.
ment space.
/ —1
p_ [ Ky = Py (HY) (S¢) (25)
2 = o (17)
In order to further expand this term, we denqéﬁ%’)_l in
the following block matrix form.
HP = {H’“} (18) g
Dy,
SPYTH (sP) !
o [ 0 A A 26
Re=14 o (19) (S9). (SP)q

We then expand the Kalman Gain in terms of the block struc-
T D -
he augmented state now fOI’C@%xk to be equal td, ex ture of Equation6).

actly (i.e., with no noise term) at every iteration. Let usno
expand the equations for the Kalman Filter prediction and

update to gain a stronger understanding of how the filter has (SD -1 (SD)_l
changed. KP =Pl [H, Di] l(s’;)el (S]z’)b_ll (27a)
The state prediction from Equatidnl (7) becomes the follow- ke kJd
ing. SD -1 SD -1
= [Pkﬁ)k—lHl/c Plﬁ)k—lD;c} ( ]73)‘11 ( ]z,)lil
b D (5¢). (50)4
Trip—1 = Frk—1T5_1)5—1 (20) (27b)
The error covariance prediction from Equatibh (8) becomes _ [(K;?) (K,?) ] (27¢)
the following. “ b

b b Here, we've used the following two terms to shorten the ex-
Pil—1 = Fiop—1 Py 1 Fr o1 + Qie—1 (21)  pression above.

The measurement prediction from Equatibh (9) can then be
written in the following form.

—1 —1
(K3i), = Pite 1 Hi (SF), + Piha DL (S), - (283)
KDY, = PP H.(SP) '+ PP DL (SP)." (28b)
25k_1 _ H]?:EkD‘k_l (22a) ( k )b klk 1 k ( k )b klk 1 k ( k )d
H.#D Furthermore, the updated state estimate from Equdiidn (13)
_ kg k-1 .
= [ D ] (22b) takes the following form.
Dkl'
klk—1

. . ~D __ ~D D. D
Similarly, we can express the measurement residual from Tilk = Teje—1 + K vk (29)

Equation[(1D) in the following manner. And the updated error covariance from Equation (14) changes

in the following way.

D D sD
Vii =25 — Ziip_ (23a)
e P, = (I = K HY )Py (30)
Kk — ij:ka—l
= |6, — Dpi (23b)  Methods using augmentation in Kalman Filters have ap-
Klk—1 peared for different applications in the past (e.g., Fixed-

AD_oint Smoothing [7], Bias Detection [8]). In order to gain
a stronger understanding of the effects of augmentation in
Kalman Filters, it can be helpful to read and understandethes
With z£ is constructed in the same fashioras methods, as well.

We expand the measurement residual covariance from Equ
tion (11) below.




3.1 Improvement gained over an Unconstrained Filter

For a given iteration, we are interested in the improvement
gained by using this method over a method that does not in- gD @ HyPyjp—1 Hy, + Ry Hy Ppj—1 D, 37
corporate equality constraints. In order to do so, we would k= Dy, Py H, Dy, Pyj—1D;, (373)
like to find the constrained estimateg, in terms of the un- /
) . TR : Sk Hy, Pyp—1Dy,

constrained estimatg,; (and similarly the constrained error DoPi H' DiPi D (37b)

. . oD . kL k|k—141 kL E|k—1
covariance matrixP, 1, in terms of the unconstrained error
covariance matrix’, ). Suppose we start with the same pre-
vious estimate and error covariance matrix for both filters.

I=|

As before, we are interested in findifg?) ' in a block
D . structure. We follow the methodology described in Appendix
Tr—1k—1 = Th—1]k=-1 Bl)  mand apply it to Equatiori(37).

P1£1|k71 :Pkfl\kfl (32)

. , . . D\l @ -1 -1
Thus, we consider the benefit of using the new constrained (Sk )a = S, + Sy HyPy-1D},
fllter_ over the unconst_ralned Kalman F|_Iter gf’;uned in one it- (DyPyx—1 D}, — Dy Py H}, Sy, Hy,
eration. We can re-write all the constrained filter's equiagi

in terms of the corresponding equations of the unconstdaine Pklkle;c) Dy Pyjje—1Hy, S, (382)

Kalman Filter. . - o & Sit + S Hy Py D
Starting with Equatior{(20), we find that the state predittio 1 R
remains the same over one iteration. (kak\ka) Dy Pyj—1 H, S, (38D)

& 514 KD}, (DyPupD}) " DrKy (380)

Tlp—1 D Fyk—1211x—1 (33a)

@ . In a similar manner using Equations{11).1(57), dnd (58), we
= Tklk—1 (33b) . . L .
arrive at the following remaining terms in the block struetu

Similarly, we find the error covariance prediction from Equa
tion (21) remains the same over one iteration.

-1 -1
(S¥), =— KDy (DxPuiDy) (39)
Pk[|)k—1 @ Fyk—1Pro1jp—1Fy -1 + Qr k-1 (34a)
®
D Pt (34b)
The measurement prediction from Equatiod (22) is then mod- py—1 /1
ified as below. (5K'). == (DePupDi) — Diky (40)
,p @D |HpZgk—
2 = . 35a
k|lk—1 [Dkxkk—l] ( ) 1 1
N D\—+ _ AN
@ Zur 50 (5P)" = (DuPuD}) @)
Dydgp—1
We can also easily modify the measurement residual fromAPPlying this to Equationg(28a), we can find the first part of
Equation[[ZB). the Kalman Gain.
p @D |2k — Hplpp—1 36 ~ When finding(S;”) 71_as described above, we know théitas defined
Vg = 8k — Didpin_1 ( a) in AppendiXA will be nonsingular since it represents the sugament resid-
Ik~ ual covarianceSy,. If this matrix was singular, this would mean there exists
(10) Vg no uncertainty in our measurement predictmmin our measurement, and
= 8y — ijkwcfl (36b) thus there would be no ability to filter. Similarly, we knovatty as defined

in Appendix[A must also be nonsingular, which is equaD;ng‘k,leC
. . see Equatior{37)). This term projects the predicted ewwariance down
And the measurement residual covariance from Equdltidn (24y, the constrained space. For well defined constraints (Eitled earlier),

can then be modified as well. this will never be singular — it will have the same rankiag.



-1
(£P), 2 Py HL(SP),
—1
+ Pyi-1Dy (SP), (42a)
@.&0 Pk|k71Hl/cSk_1
—1
+ Pyji—1H, K} D), (Dy. Py Dy,)
Dy K
—1
— Pyi—1Dy, (D Py Dy,)  DiKy,
(42b)
@ Ky — (Pejp—1 — Popp—1 Hy K}) - (42c)
Dj (D Pe D}) ™' DiK, (42d)
—1
® Ky PuD} (DePuDy) " DRKy
(42€)

Following similar steps using Equations32).1(38)./(4hd a

(59), we can arrive at the other part of the Kalman Gain.

(KP), = PyrD}y (DiPyyDy) ™" (43)

We can then substitute our expressionskgr directly into

(I = KPH) Py (453)

= (I—(KP), Hr— (KP), Dk) Prjr—1
(45b)

s —1
2,83 (I—Kka—l-Pk“CD;C (D Py Dy) " Dy

KiHy — Py Dy, (DkPkaD;c)_l Dk)

Pyj—1 (45¢)

= (I — KrHy) Pyjr—1 — Pejp Dy,

(DkPuiDy) " Di (I = KiHy) Pojies
(45d)

-1
D Py — P Dy, (Di Py Dy)  DiPry
(45e)

Equations [(44) and (45) give us the improvement gained
over an unconstrained Kalman Filter in a single iteration of
the augmentation approach to constrained Kalman Filtering
We see that the covariance matrix can only get tighter since
we are subtracting a positive semi-definite matrix fréyy,
above.

4 Incorporating Equality Constraints by Project-
ing the Unconstrained Estimate

Equation [[(2D) to find a simplified form of the updated state The second approach to equality constrained Kalman Fitler-

estimate.
Ty, @ Erpo1 + KL vp (44a)
en6 Erjp—1 + (K7), vn
+ (K7), 0k — Digjp—1) (44b)
e Tpjp—1 + Kivg
— Py Dy, (DkPka;)_l Dy Kyvy
+ Py Dy, (kak|kD;c)71
(6k — Di&g—1) (44c)
D Tpp — Prjp Dy (DkPkUcD;g)il Dy,
(Zrik — k1)
+ PyyD}, (Dy Py D)~
(6k — Diigp—1) (44d)
= Zgp — Prejp Dy (kak|kD;c)_l
(D — Ok) (44e)

ing is to run an unconstrained Kalman Filter and to project
the estimate down to the constrained space at each iteration
We can then feed the new constrained estimate into the un-
constrained Kalman Filter and continue this process. Such a
method can be described by the following minimization prob-
lem for a given time-step, Whereaékp‘k is the constrained es-
timate, 2, is the unconstrained estimate from the Kalman
Filter equations, andlVy, is any positive definite symmetric
weighting matrix.

i:kplk = argmxin{(a: — jk\k)/Wk (a? - :Ek‘k) : Dyx = 5k}
(46)
The best constrained estimate is then given by

#51 = Bxp — Wit Dl (DiW; D) ™ (Didiygr — o)
(47)
If we chooselV,, = iji, we obtain the same solution as
Equation [[44). This is not obvious considering the differ-
ing approaches. The updated error covariance under this as-

sumption will be the same as Equatidn](45) sirfqék =

/
E [(mk —:%,’:Ik) (:vk —:%,flk) ] andiy, = ). Further

Similarly, we can expand the updated error covariance inthis choice ofi¥, is the most natural since it best describes

Equation[(3D).

the uncertainty in the state.



5 Dealing with Nonlinearities HereD,, is defined as the Jacobiandf evaluated af;,’jlkfl,
similar to before. This indicates then, that the nonlinear-c

Thl:js Ifar, '3 the It<al_mtan l:lter wbe ha;/e dte:Itdwﬁh Ilniar straint we would like to model can be approximated by the
models and constraints. number of methods have ee[f'ollowing linear constraint

proposed to handle nonlinear constraints. In this paper, we
will focus on the most widely known of these, the Extended
Kalman Filter. Let's re-write the discrete unconstrained
Kalman Filtering problem from Equatiorid (1) afdl (2) below,
incorporating nonlinear models.

Dyxp =~ 6 + Dki'kp\k—l — dy, (‘%kp\k—l) (51)

' Then our projected state is given as in Seclibn 4, vith
defined as above, anil replaced by the right hand side of

Equation[(51).
Tk = frp—1 (Th—1) + Uk k-1, Ugk—1 ~ N(0,Qrr—1) 6 Discussion of Methods
(48) Thus far, we have discussed two different methods for incor-
on = hi (24) + vk, vk ~ N(0, Ry) (49) porating equality constraints in a Kalman Filter, and weehav

shown that both are mathematically equivalent under the as-
In the above equations, we see that the transition matrixsumption that the weighting matrix, chosen in Sectidn 4 is
Fi..—1 has been replaced by the nonlinear vector-valuedchosen to be”, . As such, the projection method is a more
functionfy. 1 (-), and similarly, the matri¥, which trans- ~ general formulation of the augmentation method described i
forms a vector from the state space into the measuremeriectior[ 8. On the other hand, the augmentation method pro-
space, has been replaced by the nonlinear vector-valued funvides a trivial extension teoftequality constrained Kalman
tion i (-). The method proposed by the Extended KalmanFiltering by increasing the noise modeled i’ to reflect
Filter is to linearize the nonlinearities about the curstate ~ how soft the constraint should be.

prediction (or estimate). That is, we chooBg,_; as the  In implementations, there are some subtle differences. For
Jacobian off; ., evaluated ati, 1,1, and Hy as the instance, the first method requires a minimal adjustment to
Jacobian off, evaluated atiy;,—, and proceed as in the codes for an existing Kalman Filter or an Extended Kalman
linear Kalman Filter of Sectiofll2. Numerical accuracy of Filter —i.e., we can pass in the augmented matrices and get
these methods tends to depend heavily on the nonlinear fundhe constrained estimate. This is especially advantageous
tions. If we have linear equality constraints but a nonlinea codes that use variations of the standard linear KalmaerFilt
fr.x—1 (-) andhy (), we can adapt the Extended Kalman Fil- (e.g., an Unscented Kalman Filter). On the other hand, the
ter to fit into the framework of the methods described in Sec-second method will require less memory and computation,
tions[3 and#. We have chosen to omit the specific equationgihich can significantly speed up the filtering when the state
as the extension should be apparent. space and constraint space are both large. The second method
does not store or compute the ‘cross-correlation’ terms of
Equation [(3FF), which are most likely of little interest toeth
Since equality constraints we model are often times nonlin-engineer.

ear, it is important to make an extension to nonlinear euali There is another more transparent difference between these
constrained Kalman Filtering for the two methods discussedwo methods. In implementations, we are bound to receive
thus far. We replace the linear equality constraint on thest numerical round-off error. While these two methods are
space by the following nonlinear constraihf (x;) = 6y, mathematically equivalent, we will not see the exact same re
wheredj, (+) is a vector-valued function. The method based sult. The round off error that causes the most problem occurs
on augmenting the constraints presented in Seflion 3 is trivwhen the updated error covariang, . or pé"k lose symme-
ially extended by using an Extended Kalman Filter before —try or positive definiteness. A way around this is to use the
i.e., we chooseD,, in Equation [[18) as the Jacobian @f  Joseph Form of the updated error covariance (see [2]) — this
evaluated aﬁkD‘k_l. will be discussed further in another publication.

Incorporating nonlinear equality constraints into thejgco )

tion method described in Secti@h 4 requires a more explicit7 Conclusions

change. If we linearize our constraimf, (zx) = dx, about  \e've presented two approaches for incorporating stateespa
the current state predictiar, ., we have the following. equality constraints into a Kalman Filter and shown thahbot
P P result in the same estimate structure under certain conditi
dy, (:Ek‘k,l) + Dy, (xk - ik\k,l) ~ O, (50)  The projection method should prove to be computationally

faster and is also a generalization that allows differerngtite

We can also do a midpoint approximation to fifig ., by evaluating  ing matrices when projecting the estimate. However, the aug
the Jacobian aty, _; ;_; andy ., andthen taking the component-wise \\antation method may prove easier in implementations since
mean. This has the disadvantage that it is twice as expefiviinding . . .
Fj 51, but it should be a much closer approximation. We use thisagp W€ Can use an existing Kalm_an Filter without any code mod-
imation for the Extended Kalman Filter example later in {iagper. ifications. We can also easily extend the latter to enforce

5.1 Nonlinear Equality Constraints




softequality constraints, where we allow the constraint to beB.3 Third Identity
slightly blurred by adding a proportionate amount of noise

R (Equation[(1D)). Prje—1 — Prjp—1 HL K, (59a)
A An analytic block representation for (SP) ™" = Pyp—1 (I — HL K}) (59b)
= (I — KxHg) Pyjp—1 (59¢)

SP as defined in Equatiofi (P4) is a symmetric saddle point @
matrix of the formMgpy; below. = Pk (59d)
M A B (52) Again, we've made use of the symmetry Bf;,_,; between

SPM=1p _(C Equations[(59b) and {5Bc).

In the case thatl is nonsingular and the Schur complement REFERENCES
J = —(C+BA™'B’) is also nonsingular in the above
equation, it is known that the inverse of this saddle point ma
trix can be expressed analytically by the following equatio

[1] R. E. Kalman, “A new approach to linear filtering and predi
tion problems,” Transactions of the ASME—Journal of Basic
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Applications to Tracking and Navigation John Wiley and
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Mgpy = _Jj-1gA-! J-1 [3] S.J.Jdulier and J. K. Uhlmann, “A new extension of the katm
(53) filter to nonlinear systems,Proceedings of AeroSense: The
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Simulation and Controlsvol. 3, pp. 182-193, 1997.

M. Tahk and J. L. Speyer, “Target tracking problems sabje
kinematic constraints/JEEE Transactions on Automatic Con-

For SP, we have the following equations to fit the block
structure of Equation (52) (see Equatibnl(24)). [4]

. D ’ trol, vol. 35, no. 3, pp. 324-326, 1990.
A= Hy Py Hy + Ry, (54) [5] D. Simon and T. L. Chia, “Kalman filtering with state egjtml
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of the earlier derivations of Sectifh 3. The matrices in¢hes Institute of Electrical and Electronics Engineers, In¢988,
identities are used as defined in Sectighs 2[and 3. pp. 476-479.
) ) [8] B. Friedland, “Treatment of bias in recursive filterthdEEE
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Dy, Pyj—1Dy, — D Py—1H}, Sy "Hi Pyx—1Dj,  (57@)  [9] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solutioh

saddle point problems,Acta Numerica vol. 14, . 1-137,
@ Dy, Pyj—1 D), — Dy Ky, Hy, Py -1 Dy, (57b) 2005. PO P PP
= Dy (I — Ky Hy,) Pyj—1D;, (57¢)
D py Py D, (57d)

B.2 Second Identity

In the first step below, we make use of the symmetry of
Pk|k71 andSk_l.

Sy HyPyji—1 D}y (Di Py D)~ Dy Py H} S (58a)
= (Puyp_1HpSY) DYy (Dy Py D}) ™

Dy Py H.S; (58b)

D KD}, (DyPyiD}) " DiKi (58c)
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