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Abstract: We discuss two separate techniques for Kalman Filtering in the presence of state space equality constraints. We
then prove that despite the lack of similarity in their formulations, under certain conditions, the two methods result in math-
ematically equivalent constrained estimate structures. We conclude that the potential benefits of using equality constraints in
Kalman Filtering often outweigh the computational costs, and as such, equality constraints, when present, should be enforced
by way of one of these two methods.
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1 Introduction

Kalman Filtering [1] is a method to make real-time predic-
tions for systems with some known dynamics. Traditionally,
problems requiring Kalman Filtering have been complex and
nonlinear. Many advances have been made in the direction
of dealing with nonlinearities (e.g., Extended Kalman Fil-
ter [2], Unscented Kalman Filter [3]). These problems also
tend to have inherent state spaceequalityconstraints (e.g., a
fixed speed for a robotic arm) or even state spaceinequality
constraints (e.g., maximum attainable speed of a motor). In
the past, less interest has been generated towards constrained
Kalman Filtering, partly because constraints can be difficult
to model. As a result, equality constraints are often neglected
in standard Kalman Filtering applications. However, the ben-
efits of incorporating constraints can outweigh the computa-
tional costs associated with constraining the estimate (e.g.,
the constrained estimate can be quite different from the un-
constrained estimate and the error covariance matrix can only
get tighter since we are adding information to our model).
We discuss two distinct approaches to generalizing an equal-
ity constrained Kalman Filter. The first approach is to aug-
ment the measurement space of the filter with the equality
constraints (i.e., as perfect noise-free measurements) ateach
iteration. The second approach is to find the unconstrained
estimate from a Kalman Filter and project it down to the
equality constrained space. Both of these approaches have
appeared in the literature in the past (e.g., [4], [5]). We will
then show that, under certain conditions, the first approach
and the second approach actually yield the same analytical
distribution for the constrained estimate despite the differing
formulations. There is a third well-known approach to this
problem, which is to reduce the state space by the dimension
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of the constraints. This can lead to a state space that does not
carry much meaning to the engineer. This approach, while
valid, is not discussed in this paper.
Analogous to the way a Kalman Filter can be extended to
solve problems containing non-linearities in the dynamics
using an Extended Kalman Filter by linearizing locally (or
by using an Unscented Kalman Filter), linear equality con-
strained filtering can similarly be extended to problems with
nonlinear constraints by linearizing locally (or by way of an-
other scheme). The accuracy achieved by methods dealing
with nonlinear constraints will naturally depend on the struc-
ture and curvature of the nonlinear function itself.
Equality constrained Kalman Filtering also appears as a sub-
routine in the more general framework of inequality con-
strained Kalman Filtering. One method for extending an
equality constrained filter to an inequality constrained filter
would be to use an active set method (as in [6]).

2 Kalman Filter

A discrete-time Kalman Filter attempts to find the best run-
ning estimate for a recursive system governed by the follow-
ing model:

xk = Fk,k−1xk−1 + uk,k−1, uk,k−1 ∼ N(0, Qk,k−1)
(1)

zk = Hkxk + vk, vk ∼ N(0, Rk) (2)

Herexk represents the true state of the underlying system and
Fk,k−1 is the matrix that describes the transition dynamics of
the system fromxk−1 to xk. The measurement made by the
observer is denotedzk, andHk is the matrix that transforms
a vector from the state space into the appropriate vector in the

The subscriptk means for thek-th time step.
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measurement space. The noise termsuk,k−1 andvk encom-
pass known and unknown errors inFk,k−1 andHk and are
normally distributed with mean 0 and variancesQk,k−1 and
Rk, respectively. At each iteration, the Kalman Filter makes
a state prediction forxk, which we denote bŷxk|k−1. We use
the notationk|k − 1 since we will only use measurements
provided until time-stepk−1 in order to make the prediction
at time-stepk. The state prediction error̃xk|k−1 is defined as
the difference between the true state and the state prediction,
as below.

x̃k|k−1 = xk − x̂k|k−1 (3)

The covariance structure for the expected error on the state
prediction is defined as the expectation of the outer product
of the state prediction error. We call this covariance structure
the error covariance prediction and denote itPk|k−1.

Pk|k−1 = E

[

(

x̃k|k−1

) (

x̃k|k−1

)′
]

(4)

In addition, the filter will provide a state estimate forxk,
given all the measurements provided up to and including time
stepk. We denote these estimates byx̂k|k. We similarly de-
fine the state estimate errorx̃k|k as below.

x̃k|k = xk − x̂k|k (5)

The expectation of the outer product of the state estimate er-
ror represents the covariance structure of the expected errors
on the state estimate, which we call the updated error covari-
ance and denotePk|k.

Pk|k = E

[

(

x̃k|k

) (

x̃k|k

)′
]

(6)

At time-stepk, we can make a prediction for the underly-
ing state of the system by allowing the state to transition
forward using our model for the dynamics and noting that
E [uk,k−1] = 0. This serves as our state prediction.

x̂k|k−1 = Fk,k−1x̂k−1|k−1 (7)

If we expand the expectation in Equation (4), we have the
following equation for the error covariance prediction.

Pk|k−1 = Fk,k−1Pk−1|k−1F
′
k,k−1

+ Qk,k−1 (8)

We can transform our state prediction into the measurement
space, which is a prediction for the measurement we now ex-
pect to observe.

ẑk|k−1 = Hkx̂k|k−1 (9)

The difference between the observed measurement and our
predicted measurement is the measurement residual, which
we are hoping to minimize in this algorithm.

We use the prime notation on a vector or a matrix to denote its transpose
throughout this paper.

νk = zk − ẑk|k−1 (10)

We can also calculate the associated covariance for the mea-
surement residual, which is the expectation of the outer prod-
uct of the measurement residual with itself,E [νkν′

k]. We call
this the measurement residual covariance.

Sk = HkPk|k−1H
′
k + Rk (11)

We now calculate the Kalman Gain, which lies at the heart of
the Kalman Filter. This tells us how much we prefer our new
observed measurement over our state prediction.

Kk = Pk|k−1H
′
kS−1

k (12)

Using the Kalman Gain and measurement residual, we update
the state estimate. If we look carefully at the following equa-
tion, we are taking a weighted sum of our state prediction
with the Kalman Gain multiplied by the measurement resid-
ual, so the Kalman Gain is telling us how much to ‘weigh in’
information contained in the new measurement. We calculate
the updated state estimate by

x̂k|k = x̂k|k−1 + Kkνk (13)

Finally, we calculate the updated error covariance by expand-
ing the outer product in Equation (6).

Pk|k = (I − KkHk)Pk|k−1 (14)

The covariance matrices in the Kalman Filter provide us with
a measure for uncertainty in our predictions and updated state
estimate. This is a very important feature for the various
applications of filtering since we then know how much to
trust our predictions and estimates. Also, since the method
is recursive, we need to provide an initial covariance that is
large enough to contain the initial state estimate to ensure
comprehendible performance. For a more detailed discus-
sion of Kalman Filtering, we refer the reader to the following
book [2].

3 Incorporating Equality Constraints by Aug-
menting the Measurement Space

The first method for incorporating equality constraints into a
Kalman Filter is to ‘observe’ the constraints at every iteration
as noise-free measurements. To illustrate this, we augment
linear constraints to the system shown in Equations (1) and
(2) as measurements with 0 variance. We will define the con-
straints in this formulation asDkxk = δk. Thus, we can
re-write the system.

TheI in Equation (14) represents the identity matrix of the appropriate
dimension. Throughout the remainder of this paper, we will continue to use
I in the same fashion.

We assume these constraints are well defined throughout thispaper –
i.e., no constraints conflict with one another to cause a nullsolution and no
constraints are repeated. More specifically, we assumeDk has full row rank.
Note that under these conditions ifDk was a square matrix, the constraints
would completely determine the state.



xD
k = Fk,k−1x

D
k−1

+ uk,k−1, uk,k−1 ∼ N(0, Qk,k−1)
(15)

zD
k = HD

k xD
k + vD

k , vk ∼ N(0, RD
k ) (16)

Here we use the superscriptD notation to denote the new
filter with the equality constraints. The next three equations
show the construction of the augmentation in the measure-
ment space.

zD
k =

[

zk

δk

]

(17)

HD
k =

[

Hk

Dk

]

(18)

RD
k =

[

Rk 0
0 0

]

(19)

The augmented state now forcesDkxD
k to be equal toδk ex-

actly (i.e., with no noise term) at every iteration. Let us now
expand the equations for the Kalman Filter prediction and
update to gain a stronger understanding of how the filter has
changed.
The state prediction from Equation (7) becomes the follow-
ing.

x̂D
k|k−1

= Fk,k−1x̂
D
k−1|k−1

(20)

The error covariance prediction from Equation (8) becomes
the following.

PD
k|k−1

= Fk,k−1P
D
k−1|k−1

F ′
k,k−1

+ Qk,k−1 (21)

The measurement prediction from Equation (9) can then be
written in the following form.

ẑD
k|k−1

= HD
k x̂D

k|k−1
(22a)

=

[

Hkx̂D
k|k−1

Dkx̂D
k|k−1

]

(22b)

Similarly, we can express the measurement residual from
Equation (10) in the following manner.

νD
k = zD

k − ẑD
k|k−1

(23a)

=

[

zk − Hkx̂D
k|k−1

δk − Dkx̂D
k|k−1

]

(23b)

We expand the measurement residual covariance from Equa-
tion (11) below.

With xD
k

is constructed in the same fashion asxk.

SD
k = HD

k PD
k|k−1

(

HD
k

)′
+ RD

k (24a)

=

[

Hk

Dk

]

PD
k|k−1

[

H ′
k D′

k

]

+

[

Rk 0
0 0

]

(24b)

=

[

HkPD
k|k−1

H ′
k + Rk HkPD

k|k−1
D′

k

DkPD
k|k−1

H ′
k DkPD

k|k−1
D′

k

]

(24c)

The Kalman Gain can now be written as below.

KD
k = PD

k|k−1

(

HD
k

)′ (
SD

k

)−1

(25)

In order to further expand this term, we denote
(

SD
k

)−1

in
the following block matrix form.

[

(

SD
k

)−1

a

(

SD
k

)−1

b
(

SD
k

)−1

c

(

SD
k

)−1

d

]

(26)

We then expand the Kalman Gain in terms of the block struc-
ture of Equation (26).

KD
k = PD

k|k−1

[

H ′
k D′

k

]

[

(

SD
k

)−1

a

(

SD
k

)−1

b
(

SD
k

)−1

c

(

SD
k

)−1

d

]

(27a)

=
[

PD
k|k−1

H ′
k PD

k|k−1
D′

k

]

[

(

SD
k

)−1

a

(

SD
k

)−1

b
(

SD
k

)−1

c

(

SD
k

)−1

d

]

(27b)

=
[(

KD
k

)

a

(

KD
k

)

b

]

(27c)

Here, we’ve used the following two terms to shorten the ex-
pression above.

(

KD
k

)

a
= PD

k|k−1
H ′

k

(

SD
k

)−1

a
+ PD

k|k−1
D′

k

(

SD
k

)−1

c
(28a)

(

KD
k

)

b
= PD

k|k−1
H ′

k

(

SD
k

)−1

b
+ PD

k|k−1
D′

k

(

SD
k

)−1

d
(28b)

Furthermore, the updated state estimate from Equation (13)
takes the following form.

x̂D
k|k = x̂D

k|k−1
+ KD

k νD
k (29)

And the updated error covariance from Equation (14) changes
in the following way.

PD
k|k = (I − KD

k HD
k )PD

k|k−1
(30)

Methods using augmentation in Kalman Filters have ap-
peared for different applications in the past (e.g., Fixed-
Point Smoothing [7], Bias Detection [8]). In order to gain
a stronger understanding of the effects of augmentation in
Kalman Filters, it can be helpful to read and understand these
methods, as well.



3.1 Improvement gained over an Unconstrained Filter

For a given iteration, we are interested in the improvement
gained by using this method over a method that does not in-
corporate equality constraints. In order to do so, we would
like to find the constrained estimatedx̂D

k|k in terms of the un-
constrained estimatêxk|k (and similarly the constrained error
covariance matrixPD

k|k in terms of the unconstrained error
covariance matrixPk|k). Suppose we start with the same pre-
vious estimate and error covariance matrix for both filters.

x̂D
k−1|k−1

= x̂k−1|k−1 (31)

PD
k−1|k−1

= Pk−1|k−1 (32)

Thus, we consider the benefit of using the new constrained
filter over the unconstrained Kalman Filter gained in one it-
eration. We can re-write all the constrained filter’s equations
in terms of the corresponding equations of the unconstrained
Kalman Filter.
Starting with Equation (20), we find that the state prediction
remains the same over one iteration.

x̂D
k|k−1

(31)
= Fk,k−1x̂k−1|k−1 (33a)

(7)
= x̂k|k−1 (33b)

Similarly, we find the error covariance prediction from Equa-
tion (21) remains the same over one iteration.

PD
k|k−1

(32)
= Fk,k−1Pk−1|k−1F

′
k,k−1

+ Qk,k−1 (34a)

(8)
= Pk|k−1 (34b)

The measurement prediction from Equation (22) is then mod-
ified as below.

ẑD
k|k−1

(31)
=

[

Hkx̂k|k−1

Dkx̂k|k−1

]

(35a)

(9)
=

[

ẑk|k−1

Dkx̂k|k−1

]

(35b)

We can also easily modify the measurement residual from
Equation (23).

νD
k

(31)
=

[

zk − Hkx̂k|k−1

δk − Dkx̂k|k−1

]

(36a)

(10)
=

[

νk

δk − Dkx̂k|k−1

]

(36b)

And the measurement residual covariance from Equation (24)
can then be modified as well.

SD
k

(32)
=

[

HkPk|k−1H
′
k + Rk HkPk|k−1D

′
k

DkPk|k−1H
′
k DkPk|k−1D

′
k

]

(37a)

(11)
=

[

Sk HkPk|k−1D
′
k

DkPk|k−1H
′
k DkPk|k−1D

′
k

]

(37b)

As before, we are interested in finding
(

SD
k

)−1

in a block
structure. We follow the methodology described in Appendix
A and apply it to Equation (37).

(

SD
k

)−1

a

(11)
= S−1

k + S−1

k HkPk|k−1D
′
k

(

DkPk|k−1D
′
k − DkPk|k−1H

′
kS−1

k Hk

Pk|k−1D
′
k

)−1

DkPk|k−1H
′
kS−1

k (38a)
(57)
= S−1

k + S−1

k HkPk|k−1D
′
k

(

DkPk|kD′
k

)−1

DkPk|k−1H
′
kS−1

k (38b)
(58)
= S−1

k + K ′
kD′

k

(

DkPk|kD′
k

)−1

DkKk (38c)

In a similar manner using Equations (11), (57), and (58), we
arrive at the following remaining terms in the block structure.

(

SD
k

)−1

b
= − K ′

kD′
k

(

DkPk|kD′
k

)−1

(39)

(

SD
k

)−1

c
= −

(

DkPk|kD′
k

)−1

DkKk (40)

(

SD
k

)−1

d
=

(

DkPk|kD′
k

)−1

(41)

Applying this to Equations (28a), we can find the first part of
the Kalman Gain.

When finding
`

SD
k

´−1 as described above, we know thatA as defined
in Appendix A will be nonsingular since it represents the measurement resid-
ual covarianceSk. If this matrix was singular, this would mean there exists
no uncertainty in our measurement predictionor in our measurement, and
thus there would be no ability to filter. Similarly, we know that J as defined
in Appendix A must also be nonsingular, which is equal toDkPk|k−1D′

k
(see Equation (37)). This term projects the predicted errorcovariance down
to the constrained space. For well defined constraints (as described earlier),
this will never be singular – it will have the same rank asDk.



(

KD
k

)

a

(32)
= Pk|k−1H

′
k

(

SD
k

)−1

a

+ Pk|k−1D
′
k

(

SD
k

)−1

c
(42a)

(38),(40)
= Pk|k−1H

′
kS−1

k

+ Pk|k−1H
′
kK ′

kD′
k

(

DkPk|kD′
k

)−1

DkKk

− Pk|k−1D
′
k

(

DkPk|kD′
k

)−1

DkKk

(42b)
(12)
= Kk −

(

Pk|k−1 − Pk|k−1H
′
kK ′

k

)

(42c)

D′
k

(

DkPk|kD′
k

)−1

DkKk (42d)
(59)
= Kk − Pk|kD′

k

(

DkPk|kD′
k

)−1

DkKk

(42e)

Following similar steps using Equations (32), (39), (41), and
(59), we can arrive at the other part of the Kalman Gain.

(

KD
k

)

b
= Pk|kD′

k

(

DkPk|kD′
k

)−1

(43)

We can then substitute our expressions forKD
k directly into

Equation (29) to find a simplified form of the updated state
estimate.

x̂D
k|k

(31)
= x̂k|k−1 + KD

k νD
k (44a)

(27),(36)
= x̂k|k−1 +

(

KD
k

)

a
νk

+
(

KD
k

)

b

(

δk − Dkx̂k|k−1

)

(44b)
(42),(43)

= x̂k|k−1 + Kkνk

− Pk|kD′
k

(

DkPk|kD′
k

)−1

DkKkνk

+ Pk|kD′
k

(

DkPk|kD′
k

)−1

(

δk − Dkx̂k|k−1

)

(44c)
(13)
= x̂k|k − Pk|kD′

k

(

DkPk|kD′
k

)−1

Dk
(

x̂k|k − x̂k|k−1

)

+ Pk|kD′
k

(

DkPk|kD′
k

)−1

(

δk − Dkx̂k|k−1

)

(44d)

= x̂k|k − Pk|kD′
k

(

DkPk|kD′
k

)−1

(

Dkx̂k|k − δk

)

(44e)

Similarly, we can expand the updated error covariance in
Equation (30).

PD
k|k

(32)
=

(

I − KD
k HD

k

)

Pk|k−1 (45a)

(27),(18)
=

(

I −
(

KD
k

)

a
Hk −

(

KD
k

)

b
Dk

)

Pk|k−1

(45b)
(42),(43)

=
(

I − KkHk + Pk|kD′
k

(

DkPk|kD′
k

)−1

Dk

KkHk − Pk|kD′
k

(

DkPk|kD′
k

)−1

Dk

)

Pk|k−1 (45c)

= (I − KkHk)Pk|k−1 − Pk|kD′
k

(

DkPk|kD′
k

)−1

Dk (I − KkHk)Pk|k−1

(45d)
(14)
= Pk|k − Pk|kD′

k

(

DkPk|kD′
k

)−1

DkPk|k

(45e)

Equations (44) and (45) give us the improvement gained
over an unconstrained Kalman Filter in a single iteration of
the augmentation approach to constrained Kalman Filtering.
We see that the covariance matrix can only get tighter since
we are subtracting a positive semi-definite matrix fromPk|k

above.

4 Incorporating Equality Constraints by Project-
ing the Unconstrained Estimate

The second approach to equality constrained Kalman Fitler-
ing is to run an unconstrained Kalman Filter and to project
the estimate down to the constrained space at each iteration.
We can then feed the new constrained estimate into the un-
constrained Kalman Filter and continue this process. Such a
method can be described by the following minimization prob-
lem for a given time-stepk, wherex̂P

k|k is the constrained es-
timate, x̂k|k is the unconstrained estimate from the Kalman
Filter equations, andWk is any positive definite symmetric
weighting matrix.

x̂P
k|k = argmin

x

{

(

x − x̂k|k

)′
Wk

(

x − x̂k|k

)

: Dkx = δk

}

(46)
The best constrained estimate is then given by

x̂P
k|k = x̂k|k − W−1

k D′
k

(

DkW−1

k D′
k

)−1 (

Dkx̂k|k − δk

)

(47)
If we chooseWk = P−1

k|k , we obtain the same solution as
Equation (44). This is not obvious considering the differ-
ing approaches. The updated error covariance under this as-
sumption will be the same as Equation (45) sincePP

k|k =

E

[

(

xk − x̂P
k|k

)(

xk − x̂P
k|k

)′
]

and x̂P
k|k = x̂D

k|k. Further

this choice ofWk is the most natural since it best describes
the uncertainty in the state.



5 Dealing with Nonlinearities

Thus far, in the Kalman Filter we have dealt with linear
models and constraints. A number of methods have been
proposed to handle nonlinear constraints. In this paper, we
will focus on the most widely known of these, the Extended
Kalman Filter. Let’s re-write the discrete unconstrained
Kalman Filtering problem from Equations (1) and (2) below,
incorporating nonlinear models.

xk = fk,k−1 (xk−1) + uk,k−1, uk,k−1 ∼ N(0, Qk,k−1)
(48)

zk = hk (xk) + vk, vk ∼ N(0, Rk) (49)

In the above equations, we see that the transition matrix
Fk,k−1 has been replaced by the nonlinear vector-valued
functionfk,k−1 (·), and similarly, the matrixHk, which trans-
forms a vector from the state space into the measurement
space, has been replaced by the nonlinear vector-valued func-
tion hk (·). The method proposed by the Extended Kalman
Filter is to linearize the nonlinearities about the currentstate
prediction (or estimate). That is, we chooseFk,k−1 as the
Jacobian offk,k−1 evaluated at̂xk−1|k−1, and Hk as the
Jacobian ofhk evaluated at̂xk|k−1 and proceed as in the
linear Kalman Filter of Section 2. Numerical accuracy of
these methods tends to depend heavily on the nonlinear func-
tions. If we have linear equality constraints but a nonlinear
fk,k−1 (·) andhk (·), we can adapt the Extended Kalman Fil-
ter to fit into the framework of the methods described in Sec-
tions 3 and 4. We have chosen to omit the specific equations,
as the extension should be apparent.

5.1 Nonlinear Equality Constraints

Since equality constraints we model are often times nonlin-
ear, it is important to make an extension to nonlinear equality
constrained Kalman Filtering for the two methods discussed
thus far. We replace the linear equality constraint on the state
space by the following nonlinear constraintdk (xk) = δk,
wheredk (·) is a vector-valued function. The method based
on augmenting the constraints presented in Section 3 is triv-
ially extended by using an Extended Kalman Filter before –
i.e., we chooseDk in Equation (18) as the Jacobian ofdk

evaluated at̂xD
k|k−1

.
Incorporating nonlinear equality constraints into the projec-
tion method described in Section 4 requires a more explicit
change. If we linearize our constraint,dk (xk) = δk, about
the current state prediction̂xk|k−1, we have the following.

dk

(

x̂P
k|k−1

)

+ Dk

(

xk − x̂P
k|k−1

)

≈ δk (50)

We can also do a midpoint approximation to findFk,k−1 by evaluating
the Jacobian at̂xk−1|k−1 andx̂k|k−1 and then taking the component-wise
mean. This has the disadvantage that it is twice as expensivefor finding
Fk,k−1, but it should be a much closer approximation. We use this approx-
imation for the Extended Kalman Filter example later in thispaper.

HereDk is defined as the Jacobian ofdk evaluated at̂xP
k|k−1

,
similar to before. This indicates then, that the nonlinear con-
straint we would like to model can be approximated by the
following linear constraint

Dkxk ≈ δk + Dkx̂P
k|k−1

− dk

(

x̂P
k|k−1

)

(51)

Then our projected state is given as in Section 4, withDk

defined as above, andδk replaced by the right hand side of
Equation (51).

6 Discussion of Methods

Thus far, we have discussed two different methods for incor-
porating equality constraints in a Kalman Filter, and we have
shown that both are mathematically equivalent under the as-
sumption that the weighting matrixWk chosen in Section 4 is
chosen to beP−1

k|k . As such, the projection method is a more
general formulation of the augmentation method described in
Section 3. On the other hand, the augmentation method pro-
vides a trivial extension tosoftequality constrained Kalman
Filtering by increasing the noise modeled inRD

k to reflect
how soft the constraint should be.
In implementations, there are some subtle differences. For
instance, the first method requires a minimal adjustment to
codes for an existing Kalman Filter or an Extended Kalman
Filter – i.e., we can pass in the augmented matrices and get
the constrained estimate. This is especially advantageousfor
codes that use variations of the standard linear Kalman Filter
(e.g., an Unscented Kalman Filter). On the other hand, the
second method will require less memory and computation,
which can significantly speed up the filtering when the state
space and constraint space are both large. The second method
does not store or compute the ‘cross-correlation’ terms of
Equation (37), which are most likely of little interest to the
engineer.
There is another more transparent difference between these
two methods. In implementations, we are bound to receive
numerical round-off error. While these two methods are
mathematically equivalent, we will not see the exact same re-
sult. The round off error that causes the most problem occurs
when the updated error covariancePD

k|k or PP
k|k lose symme-

try or positive definiteness. A way around this is to use the
Joseph Form of the updated error covariance (see [2]) – this
will be discussed further in another publication.

7 Conclusions

We’ve presented two approaches for incorporating state space
equality constraints into a Kalman Filter and shown that both
result in the same estimate structure under certain conditions.
The projection method should prove to be computationally
faster and is also a generalization that allows different weight-
ing matrices when projecting the estimate. However, the aug-
mentation method may prove easier in implementations since
we can use an existing Kalman Filter without any code mod-
ifications. We can also easily extend the latter to enforce



softequality constraints, where we allow the constraint to be
slightly blurred by adding a proportionate amount of noise
RK

d (Equation (19)).

A An analytic block representation for
(

SD
k

)−1

SD
k as defined in Equation (24) is a symmetric saddle point

matrix of the formMSPM below.

MSPM =

[

A B′

B −C

]

(52)

In the case thatA is nonsingular and the Schur complement
J = −

(

C + BA−1B′
)

is also nonsingular in the above
equation, it is known that the inverse of this saddle point ma-
trix can be expressed analytically by the following equation
(see e.g., [9]).

M−1

SPM =

[

A−1 + A−1B′J−1BA−1 −A−1B′J−1

−J−1BA−1 J−1

]

(53)
For SD

k , we have the following equations to fit the block
structure of Equation (52) (see Equation (24)).

A = HkPD
k|k−1

H ′
k + Rk (54)

B = DkPD
k|k−1

H ′
k (55)

C = −DkPD
k|k−1

D′
k (56)

Under the assumption that bothA andJ are nonsingular, we
can make some substitutions and express

(

SD
k

)−1

following
the notation of Equation (26).

B Some Identities

The following are identities that will prove useful in some
of the earlier derivations of Section 3. The matrices in these
identities are used as defined in Sections 2 and 3.

B.1 First Identity

DkPk|k−1D
′
k − DkPk|k−1H

′
kS−1

k HkPk|k−1D
′
k (57a)

(12)
= DkPk|k−1D

′
k − DkKkHkPk|k−1D

′
k (57b)

= Dk (I − KkHk)Pk|k−1D
′
k (57c)

(14)
= DkPk|kD′

k (57d)

B.2 Second Identity

In the first step below, we make use of the symmetry of
Pk|k−1 andS−1

k .

S−1

k HkPk|k−1D
′
k

(

DkPk|kD′
k

)−1

DkPk|k−1H
′
kS−1

k (58a)

=
(

Pk|k−1H
′
kS−1

k

)′
D′

k

(

DkPk|kD′
k

)−1

DkPk|k−1H
′
kS−1

k (58b)
(12)
= K ′

kD′
k

(

DkPk|kD′
k

)−1

DkKk (58c)

B.3 Third Identity

Pk|k−1 − Pk|k−1H
′
kK ′

k (59a)

= Pk|k−1 (I − H ′
kK ′

k) (59b)

= (I − KkHk)Pk|k−1 (59c)
(14)
= Pk|k (59d)

Again, we’ve made use of the symmetry ofPk|k−1 between
Equations (59b) and (59c).
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